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We discuss the crucial role played by finite-size effects and inhomogeneity on the Berezinskii-Kosterlitz-
Thouless (BKT) transition in two-dimensional superconductors. In particular, we focus on the temperature
dependence of the resistivity, that is dominated by superconducting fluctuations above the BKT transition
temperature Tgir and by inhomogeneity below it. By means of a renormalization-group approach we establish
a direct correspondence between the parameter values used to describe the BKT fluctuation regime and the
distance between Tyt and the mean-field Ginzburg-Landau transition temperature. Below Tyt a resistive tail
arises due to finite-size effects and inhomogeneity, that reflects also on the temperature dependence of the
superfluid density. We apply our results to recent experimental data in superconducting LaAlO5/SrTiO; het-
erostructures, and we extract several informations on the microscopic properties of the system from our BKT
fitting parameters. Finally, we compare our approach to recent data analysis presented in the literature, where

the physical meaning of the parameter values in the BKT formulas has been often overlooked.
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I. INTRODUCTION

In the last years a renewed interest emerged in the super-
conducting transition in two-dimensional (2D) systems,
prompted by the experimental achievement of high-quality
ultrathin films of superconducting materials. To this category
belong both few-unit-cell thick films of layered cuprate
superconductors'= and the nanometer-thick layers of super-
conducting electron systems formed at the interface
between insulating oxides in artificial LaAlO5/SrTiOs
heterostructures.*> At the same time, the experimental
progresses made in the last decade of intense investigation in
high-temperature superconductors prompted additional mea-
surements in thin films of conventional superconductors by
means of different techniques or higher resolution than the
ones available in the past. Typical examples are provided by
the finite-frequency study of the optical magnetoconductivity
in films of InO,,° Nernst-effect measurements in amorphous
films of NbSi (Ref. 7) and scanning tunneling microscopy in
TiN films.3*

Due to the 2D nature of these systems, the superconduct-
ing (SC) transition is expected to belong to the Berezinskii-
Kosterlitz-Thouless (BKT) universality class,!®'? where the
gauge symmetry is unbroken in the SC state but the system
has a finite superfluid density, which is destroyed at Tgg by
proliferation of vortex-antivortex phase fluctuations. As it
has been discussed at length in the past literature, the BKT
transition has, in principle, very specific signatures.'>!* For
example, by approaching the transition from below, the su-
perfluid density n, is expected to go to zero discontinuously
at the BKT temperature Tgyr, With an “universal” relation
between ny(Tgkr) and Tgyr itself.!3!5 Approaching instead
the transition from above one has, in principle, the possibility
to identify the BKT transition from the temperature depen-
dence of the superconducting fluctuations. Indeed, in 2D the
temperature dependence of several physical quantities (such
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as the paraconductivity or the diamagnetism) is encoded in
the temperature dependence of the superconducting correla-
tion length &(T), that diverges exponentially at Tggr, in con-
trast to the power law expected within Ginzburg-Landau
(GL) theory.'® A possible interpolation scheme between stan-
dard GL fluctuations and BKT phase fluctuations of the SC
order parameter was proposed long ago in a seminal paper by
Halperin and Nelson!” (HN).

In the attempts made in the past to find out experimental
signatures of the BKT transition in thin films of conventional
superconductors'®2% it turned out that BKT fluctuations are
usually restricted to a small temperature regime near the GL
transition temperature 7. If the energy range 7,—Tgkr 1S
extremely small, most of the fluctuation regime is dominated
by GL fluctuations, and the exponential signatures of BKT
fluctuations can be hardly detected. The predominance of the
GL fluctuation regime has been confirmed also by more re-
cent measurements of Nernst effect in NbSi films’ and zero-
bias tunneling conductance in TiN films.” Analogously, the
expected universal jump of ny(Tggr) at Tgxr due to vortex
proliferation can be overscreened by the simultaneous fast
decrease in n,(7) due to quasiparticle excitations near T..?°

An additional effect that can mask the occurrence of BKT
transition is the intrinsic inhomogeneity of the sample. For
example, as it has been discussed recently in the context of
thin films of high-temperature superconductors,’! the spatial
inhomogeneity can broaden considerably the universal jump
of the superfluid density, leading to a smooth downturn of
the superfluid density instead of the sharp one expected in
ultrathin samples. Such an intrinsic mesoscopic inhomogene-
ity has been revealed by scanning tunneling spectroscopy in
cuprate superconductors,?? and recently also in films of con-
ventional supercondutcors.® This indicates that inhomogene-
ity is a crucial ingredient to several superconducting systems
in the presence of disorder, as suggested also by recent nu-
merical simulations.?® Finally, one must account also for
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finite-size effects (at the scale of the sample dimensions or
even smaller, in the inhomogeneous case), that are expected
to cut off the divergence of the correlation length at Tgkr.

In this work we aim to address the role of inhomogeneity
and finite-size effects in the BKT transition, providing a gen-
eral scheme for analyzing paraconductivity measurements in
quasi-2D superconductors. We first match the HN interpola-
tion scheme with a detailed analysis of the renormalization-
group (RG) equations for the BKT transition far from the
critical region where an analytical solution is available,'”
taking into account finite-size effects. This analysis allows us
to relate the parameters of the standard BKT correlation-
length expression to microscopic quantities, reducing consid-
erably the degrees of freedom in the fitting procedure of the
resistivity data. In particular, we show that once fixed the
difference T.—Tgyr and the value of the vortex-core energy,
whose role has been recently discussed in the context of the
physics of high-temperature superconductors,”!?4%7 the be-
havior of the resistivity from Tggt up to temperatures far
above T. is uniquely determined. In this way we establish a
consistency check that the fitting parameters must satisfy
when the standard BKT approximated formulas are used, a
fact that has been often overlooked in the literature. Building
on such an analysis we can also take into account the role of
inhomogeneities, which as we will show are crucial to un-
derstand the experimental situation. Indeed even relatively
small inhomogeneities can provide a significant enhance-
ment of the resistive response below the Tyir transition, that
is simultaneously reflected in the temperature dependence of
the superfluid density across the transition itself. A paradig-
matic example of application of our analysis is provided by
recent measurements in superconducting heterostructures.*>
As we shall see, a correct treatment of finite-size effects and
inhomogeneity allows us to reproduce with great accuracy
the available experimental results, and to estimate the super-
fluid density in these unconventional systems.

We note that although the BKT transition has been al-
ready invoked to discuss the physics of such heterostruc-
tures, a very different approach was taken so far in the
literature,*>? relying essentially on the idea that the GL
temperature 7 is far larger than Ty (that can have eventu-
ally a different qualitative character?) so that the whole fluc-
tuation regime can be described within BKT theory. A sche-
matic view of the difference between our analysis and the
previous approach is shown in Fig. 1. The point of view
taken in Refs. 4, 5, and 28 leads of course to a very different
identification of the various temperature regimes, and very
different physical parameters for the underlying BKT theory.
In our view these previous analyses suffer from several prob-
lems, that we will discuss explicitly in this paper. In particu-
lar, they do not correctly identify the physical parameters of
the system and thus overlook several interesting conse-
quences that one can extract from the accurate experimental
measurements performed in these new materials.

The structure of the paper is the following. In Sec. II we
review the standard description of fluctuation conductivity in
2D superconductors, that establishes the correspondence be-
tween resistivity and the fluctuation correlation length. In
Sec. III we analyze systematically the behavior of the corre-
lation length within BKT theory, by means of a RG ap-
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FIG. 1. (Color online) Comparison between the approach dis-
cussed in our paper and the one presented so far in the literature
(Refs. 4, 5, and 28) as far as the resistivity data in superconducting
heterostructures are concerned. The experimental data for the resis-
tivity R normalized to the normal-state value Ry are taken from Ref.
5, and are the same as the ones showed in Figs. 7 and 9 below. On
the left panel we summarize our approach; most of the fluctuation
regime above Tgkr is dominated by GL fluctuations while BKT
fluctuations are restricted to a narrow range of temperatures near the
transition temperature Tgir that would be observable in the homo-
geneous system. However, inhomogeneity leads to a considerable
tail in the resistivity, that remains finite below Tggt. On the right
panel we summarize the point of view used in Refs. 4, 5, and 28;
the whole range of temperatures above Tgyr is dominated by SC
fluctuations having BKT character, and finite-size effects are re-
sponsible for the resistive tail below Tgir.

proach. This allows us to fully identify the parameters in the
HN formula interpolating between the BKT transition and
the standard Gaussian fluctuations. Section IV is devoted to
the discussion of the role of inhomogeneity, through the di-
rect application of our interpolating BKT-to-GL scheme to
the resistive transition. We apply our scheme to identify the
relevant parameters in superconducting heterostructures. In
Sec. V we clarify the differences between our approach and
previous theoretical reports. The reader interested only to the
issue of analyzing the experimental data can refer directly to
the Secs. IV and V. Finally, Sec. VI contains the concluding
remarks.

II. FLUCTUATION CONDUCTIVITY IN 2D
SUPERCONDUCTORS

The definition of fluctuation conductivity within the BKT
theory relies on the Bardeen-Stephen formula,? which gives
the excess conductivity Ao=o-0y with respect to the
normal-state conductivity oy as a function of the density of
free vortices ny above Tyt as

7 wapyng’

where the vortex mobility is w,=27&cp,/P;, & is the
spacing for the vortex lattice, that we will assume equal to
the zero-temperature coherence length, p, is the normal-state
resistivity, and @) is the flux quantum. The vortex density is
also conventionally defined in terms of the correlation length
&as 2mnp=1/& so that near the transition where Ao> oy

A
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the ratio between the resistance R and its normal-state value
Ry is

R 2
E;=2w%nF=(%>, )

which is the formula usually quoted in the literature for the
paraconductivity due to vortices, once that &(7) is calculated
within BKT theory. Remarkably, in 2D the same formula is
valid for the Aslamazov-Larkin (AL) contribution of GL
fluctuations.'%3° However, in this case the temperature de-
pendence of &(T) follows & ~ 1/1og(T/T,), or equivalently
&, ~T,/(T-T,), where T, is the GL or mean-field critical
temperature. In 2D films the true transition occurs at a Tgr
lower than 7, the distance between the two being a function
of the microscopic parameters of the system. Thus, the fluc-
tuation conductivity crosses over from a GL regime, where it
shows a tendency to a power-law divergence at T, to a KT
regime, where the correlation length diverges asymptotically
when T— Tyt as E~exp(b/\t), where we introduced the
reduced temperatures

T-T, T.-T,
IEi, po= ¢ TBKT (3)

TB KT

As it was observed already by Halperin and Nelson,!” the
BKT fluctuations are expected to be present only in the range
of temperatures ¢t<<f.. Thus, using the general expression
Ao &, they proposed a well-known interpolation formula
between the GL and BKT regimes given by

Ao = aAyNO N Sinhz(\"bHNtC/t), (4)

where by is a dimensionless constant of order 1. Thus, for
bynt./t>1 one recognizes the exponential divergence char-
acteristic of the BKT theory while for bynt./t<<1 one recov-
ers a power-law increase typical of GL fluctuations. For the
prefactor ayy Halperin and Nelson assumed ayn=0.37/byy;,
following the Beasley-Mooij-Orlando?! approximate relation
between oy and the ratio Tgky/T, in dirty BCS supercon-
ductors. We note in passing that in the dirty BCS limit one
can indeed consider only the AL contribution to the GL para-
conductivity while in clean samples also the Maki-Thomson
contribution can be sizable, making the analysis of GL fluc-
tuations more involved.'”

In the HN formula some ambiguity is still present in the
choice of the parameters, i.e., the prefactor and the exponen-
tial coefficient. In this work we want to fix this ambiguity by
determining exactly their values from a RG analysis of the
BKT correlation length. In this way, we provide a clear pro-
cedure to analyze experimental data by respecting the inter-
nal consistency between the fitting parameters for the para-
conductivity. Moreover, we will discuss how finite-size
effects and inhomogeneity affect the fluctuations resistivity
above and below Tggr. All these issues turn out to be crucial
to correctly interpret the experimental data, as we will dis-
cuss in Secs. IV and V.
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III. BEHAVIOR OF THE CORRELATION LENGTH
WITHIN THE BKT THEORY

As it was shown by Kosterlitz in its original work,'>!? the
critical properties of the BKT transition can be captured by
the analysis of the RG equations for the two main quantities
involved in the SC transition: the superfluid stiffness J and
the vortex fugacity g=2me P (B=1/kyT), where u is the
vortex-core energy. The stiffness J is the energy scale asso-
ciated to the 2D superfluid density nfD (measured experi-
mentally via the inverse penetration depth \), including al-
ready the temperature depletion due to quasiparticle
excitations,

ﬁznfD(T)_ K d
dmky 16w NX(T)’

J(T) = (5)
where d is the film thickness and m" is the effective mass of
the carriers. The vortex-core energy u is in general a mul-
tiple of the stiffness itself,?!?+32

w(T) = mJ(T), (6)

where @ is a dimensionless constant. As we discussed
recently,>!?*2% a general approach to the BKT transition can
require to assume that & deviates with respect to the conven-
tional value [ixy=72/2 that it acquires in the XY
model'>!332 5o that we shall use

e

p=apxy=as. (7)
The RG equations in the variables g and K=mJ;/T can be
written (in analogy with the notation used for the sine-
Gordon model'?) as

dK

2}'=-5? % (8)
d

§=@—m& ©)

where €=1In a/§, and &,, a are the original and rescaled RG
lattice spacing, respectively. The physical value of the super-
fluid density J; is determined by the limiting value of K
under RG flow, ie., J,=TK({—x)/7. In the low-
temperature regime K >2 so that the vortex fugacity scales
to zero under RG flow and J; is finite, with a small renor-
malization with respect to the initial value. Instead at high
temperature K<<2 the vortex fugacity becomes relevant, it
diverges under RG flow and as a consequence J, scales to
zero. The BKT temperature is the one where the above sys-
tem of equations reaches the fixed point K=2, g=0 so that
at Tggr,

mJ(Tgkr) _

2, (10)
Tgkr

i.e., one recovers the universal jump of the superfluid
density.!31

The usual definition of the correlation length & above
Tgkr relies on the determination in the RG Egs. (8) and (9)
of a characteristic scale € at which the vortex fugacity is

12,13
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“sufficiently large.” The exact definition of this scale is
somehow arbitrary but it does not change qualitatively the
results. In practice, we shall use as a working definition the
scale €, where the RG parameter K({,) related to the super-
fluid density vanishes. The vortex density and correlation
length are then defined as

g 1
2ma’(€) &
where ¢=min(¢,,¢,,,.), where ¢,,,. takes into account finite-
size effects, as we shall discuss below. Near Tggt one ex-

pects to recover the well-known'? exponential behavior of
&(T), that we will parameterize as

a(t) = &', (11)

2mnE =

£ Lo 1o, (12)
& A
where b and A are constants of order 1.

It should be emphasized that if the bare superfluid stiff-
ness were a constant independent of the temperature Eq. (12)
would be valid until £~ O(1), i.e., essentially at all relevant
temperatures above Tygr. However, what limits in a crucial
way the applicability of the above approximation is the tem-
perature dependence of J(T) due to quasiparticle excitations,
which lead to the vanishing of J(T) at the GL temperature 7.
In a s-wave BCS superconductor a good approximation for
J(T) is

J0 _[ A [ _ (z [T, )
/0 _{ A, } , A(T)=A, tanh 2 T—l .

For any practical purpose, to determine 7, what matters is
only the behavior of J(T) near T, that according to the above
equation is linear,

J(T)zjoé(l—%), T~T,. (13)

c

By neglecting the normalization of J; with respect to J due to
vortices already below Tk, one can approximately estimate
the BKT temperature by the condition (10) J(Tgkr)
=2Tgkt/ , so that one gets

_ 8T,
Comly

Thus, one sees that the larger is Jy/7,. the smaller is
the interval f. In a thin film of conventional
superconductors'®2Y the typical mean-field temperatures are
of order of few K while J, can be as large as the Fermi
energy if nfD (0) coincides with the electron density, as it is
the case in clean superconductors.? Indeed, Eq. (5) gives

d[A]
N[ (um)?]

With d of order of few nanometers and A(0) ~ 100 A, as it is
the case for conventional clean superconductors,> one has J,
of order of 10° K so that ¢, would be of order of 1073, and
then the BKT transition would be essentially indistinguish-
able from the mean-field 7. However, in dirty films of su-
perconductors J, can be substantially reduced with respect to

t (14)

J=22.1n*"[10" cm™] K =0.62 K. (15)
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the clean case'®?° so that 7, assumes usually values around

0.05=t.=<0.5, and Tggr is sufficiently far from 7, to be
observable.

From the point of view of the temperature dependence of
the correlation length one sees that as one moves away from
Tgxr toward T, the decrease in w(T) near T, makes the in-
crease in the vortex fugacity under RG flow very fast so that
the RG superfluid density vanishes for a({) = &, and ¢ scales
as the unrenormalized vortex fugacity,? i.e.,

E=ge P2 1. (16)
Since u(T)—0 as T—T,, it follows that £&=§, at T=T,. No-
tice that strictly speaking one could assume that also the
vortex-lattice spacing &, increases as T— T, as the mean-
field correlation length. However, this just signals that as T
is approached the phase-modulus separation that justifies the
BKT approach to the fluctuations fails because the two de-
grees of freedom cannot be separated anymore in a con-
trolled way. One expects that &(T) interpolates in a continu-
ous way between the BKT regime [Eq. (12)] and the GL
regime, as we shall see below. Anyway, what is crucial to
realize is that the approximate form Eq. (12) is limited to a
regime t<<t,. by the existence itself of a fluctuating GL re-
gime at higher temperatures.

As it is well known,'? in an infinite system the BKT cor-
relation length remains infinite anywhere below Tggr. This
signals the fact that in 2D no symmetry breaking can occur
so that the SC correlations decay to zero at large distance
with a nonuniversal power-law decay, instead of the expo-
nential decay to a finite value that one has in higher dimen-
sions. From the point of view of the definition of ¢ used
above in terms of the scale €, where J,(€) vanishes, since J;
is always finite below Tgir then €= in the SC phase. How-
ever, in any real system the RG scaling must be stopped at a

certain scale €,

L
Crnax = log—, (17)
&

where L is the maximum physical scale accessible in the
system (such as the system size or the size of the homoge-
neous domains, see Sec. IV). As a consequence, the diver-
gence itself of the correlation length is cut off below the
temperature where €,=€,,, so that the correlation length
starts deviating from Eq. (12), and finite-size effects domi-
nate. Sufficiently below Ty, K(€) is substantially unrenor-
malized with respect to the initial value K(0) (Ref. 14) so
that we can estimate finite-size effects by integrating the RG
equation for g using K(£)=K(0). Thus, g,({)=g,(0)e? K¢
from Eq. (9) and the correlation length behaves as

£ panlL K(T)2 _
§_=€ - » T'=Tggr. (18)
0 0

We notice that, following Eq. (13), near T,., K(T) can be
approximated as K(7)=2(1-t/t.). As a consequence, from
Eq. (18) we see that the size-limited ¢ grows below Ty as
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FIG. 2. (Color online) Temperature dependence of the correla-
tion length within KT theory, obtained by numerical integration of
the RG Egs. (8) and (9) with the definition Eq. (11), where € is
determined either by the vanishing of the superfluid stiffness or by
the finite system size €,,,, see Eq. (17). Here T,=J,=0.25 K and
= jixy. The solid line represents the fit done using Eq. (12) with
A=5 and b=1.25. Since Tpgr=0.18 the b value obtained by the fit
is consistent with Eq. (21). Inset: same data plotted as a function of
1/+t, where ¢ is the reduced temperature defined in Eq. (3). Notice
that the curves for lower €, deviate from the infinite-length-scale
limit [Eq. (12)] at higher temperatures.

[t
£ [z "
& \&

Thus, if one considers two cases with the same L and Tgir
but different ¢, the finite-size effects are less pronounced in
the case with smaller 7. because ¢ is still very large below
Tgkr-

As an example of the correlation-length temperature de-
pendence we show in Fig. 2 the numerically integrated & at
various values of the scale L, along with the fit of Eq. (12).
Here we consider the case Jo=7.=0.25 K so that a relatively
large interval #.=0.36 is obtained, to better shown the BKT-
to-GL crossover. From the inset of Fig. 2 we observe that to
correctly capture the exponential scaling one must use ex-
tremely large sizes, far beyond the experimentally accessible
regime. Indeed, since for conventional superconductors usu-
ally £,=100 A and L=1 cm, then L=10°, and €, =12
while the exponential fit in Fig. 2 is better defined with
€ nax=100.

As one can see in the main panel of Fig. 2, the exponen-
tial fit [Eq. (12)] deviates slightly from the RG correlation
length as one moves to temperatures higher than Tggr. This
qualitative difference is also reflected by the temperature de-
pendence of the fluctuations resistivity, that can be calculated
according to Eq. (2), by using either the RG or the approxi-
mate form (12) of the correlation length. The result for the
same set of parameters used in Fig. 2 is shown in Fig. 3; as
shown in the inset, on a linear scale R has always an upward
curvature, with no appreciable differences for the different L
values. Such a difference becomes instead evident on a loga-
rithmic scale: as T— Ty, R/Ry deviates from the infinite-
size limit, exactly in the same fashion observed in experi-
ments in thin films (see, for example, Fig. 9 of Ref. 19). This
scaling can be probed by small magnetic fields; indeed, a
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FIG. 3. (Color online) Fluctuation resistivity in KT theory as a
function of temperature for several values of the system size. The
same set of parameters of Fig. 2 has been used. Inset: same curves
but on a linear scale, where no appreciable difference can be ob-
served for the different system sizes.

small field has the effect to cut off the RG at a scale Ly
o 1/B. The curves shown in Fig. 11 of Ref. 19 for the fluc-
tuation resistivity at several (small) values of the magnetic
field reproduce exactly the behavior observed in Fig. 3.

Due to the need of exceedingly large system sizes for an
accurate determination of the parameters of the fit [Eq. (12)],
an a priori estimate of them as a function of physical param-
eters would be particularly useful. To address this issue we
computed ¢ for several possible values of 7. and i, to ana-
lyze the variations in b. While different ¢, values naturally
occur in different systems, the choice of & is somehow still
an open problem. As we mentioned above, within the XY
model (that is one of the possible models for describing
phase fluctuations in a superconductor) fixy=m>/2; this
value naturally arises from the mapping of the discrete XY
model on the continuum Coulomb-gas model,?? and it takes
into account the fluctuations at a scale on the order of the
lattice spacing. In a BCS superconductor one could instead
fix the value of the vortex-core energy by computing exactly
the energy per unit length of a vortex line,?

(s e <] - o e oo
I=\——] |log—+e|=mnJ|log—+¢€
4\ ) &

so that according to our definition &= 1re. A precise estimate
of €=0.497 for the vortex core in three-dimensional geom-
etry is given in Refs. 33 and 34 so that within BCS one could
eventually expect smaller values of w,
Hpcs = T8y (20)
2 T
Finally, we notice that recent analysis in the context of cu-
prate superconductor?!?42627 has explored instead the possi-
bility that @ is larger than yy. On the light of the previous
observations, we considered the behavior of the correlation
length for a range of values 0.5=< gz =1.2, and we extracted
the corresponding b parameter by fitting data near Tggy with
Eq. (12). The results are shown in Fig. 4. As one can see,
within a certain degree of uncertainty, b is found to scale
approximately as
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FIG. 4. (Color online) Estimate of b extracted by fitting the RG
&) near Tgygr with Eq. (12) for several values of 7., a. The
straight line is y=2.1x.

b=2a\l, (21)

where « is the scale of the vortex-core energy defined in Eq.
(7). Equation (21) is the first important result of this paper.
Indeed, it establishes a precise relation between the param-
eter b that appears in the typical exponential expression for
the BKT correlation length and the distance 7. between the
GL and BKT temperatures. Taking into account Egs. (12)
and (16), we also see that the formula (12) can only be used
when b/Vt>1, which means t<4a2tc. Indeed, out of this
regime ¢ decreases according to Eq. (16), and afterward (T
>T.) one enters the GL fluctuations regime. We notice also
that this result agrees with the HN result (4), once one uses
bHsza.

The analysis we have made by coupling the standard BKT
formula (12) with the RG analysis of the BKT transition thus
allows us to get strong constraints on what the “fit param-
eters” that are to be used in the BKT formula can be. This
will help in the following to take into account additional
effects such as the ones of inhomogeneities, but specially to
know if the fit to the BKT functional form corresponds to a
physical fit, with reasonable parameters, or if one just “forces
the fit” (see discussion in Sec. V).

IV. ROLE OF INHOMOGENEITIES

Once we established a clear framework for taking into
account the exponential behavior of the correlation length
and the finite-size effects we can improve the HN original
interpolation formula for paraconductivity, in order to obtain
a self-consistent treatment of SC fluctuations all the way
below and above Tggkt. We propose the following interpolat-
ing formula:

R__ 1 __ 1 (22)
Ry 1+(Aglo,) 1+(8&)%
where £ is given by
1\ (02T
gé = e'BM(T)Q(g—) , T'= TBKT, (23)
0 0
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FIG. 5. (Color online) Comparison between the numerical RG
correlation length defined by Eq. (11) and the approximate formulas
(23) and (24). Here we used the same Tgkr, T., m values of Fig.
2 in the case €, =5 so that b=1.25 and A=5.

2.
=Zsmh , T=Tgkr (24)

o [ow

with the parameter A, b obtained by the calculated behavior
of the numerical RG correlation length near the transition so
that b is given by Eq. (21) and A is a number of order 1. As
it is shown in Fig. 5 this is indeed a very good approximation
for the numerical RG solution near and below Tggr. More-
over, even though it does not capture the regime [Eq. (16)],
where the estimate [Eq. (24)] is larger than the RG correla-
tion length, it correctly reproduces the GL fluctuation regime
at T>T,, where Ac~T./(T-T,). We stress once more that
within this approach the temperature dependence of the cor-
relation length in the whole fluctuating regime is uniquely
determined by the critical temperatures Tggr, 7. and the
value of the vortex-core energy, that can be fixed by the
comparison with the experimental resistivity data.

The main physical message of the set of Egs. (21), (23),
and (24) is that from the temperature dependence of the fluc-
tuation resistivity between Tgit and 7> T, one can deduce
interesting informations also on the microscopic parameters
of the superconducting system, that determine the distance
between 7. and Tggr. To illustrate the application of this
approach we consider the analysis of the resistivity data in
superconducting heterostructures reported in Ref. 4. Here the
resistive transition occurs around 0.19 K but with a relatively
large tail with respect for example to what observed in 2D
films of ordinary superconductors.'3-2% If we neglect the tail,
by means of Egs. (23) and (24) we can obtain the curve
labeled as “Hom” in Fig. 6. As one can see, we reproduce the
overall shape of the resistivity, except from the tail. Since the
fit gives b=0.19, according to Eq. (21) we deduce that T, and
Tkt almost coincide, with 7,.=0.19 K and Tgg1=0.188 K.

Let us discuss now the origin of the remaining tail of the
resistivity near the transition. First of all, we notice that it
cannot be due to finite-size effects, that can be treated ex-
actly within our approach. Indeed, even using a relatively
small L=2 um (as suggested by the critical current, see be-
low), with &=70 A,* one gets €,,,,=5.6, but due to the
small 7. value the & from Eq. (23) is still very large below
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FIG. 6. (Color online) Comparison between the resistivity of the
heterostructure measured in Ref. 4 and the resistivity obtained with
the interpolating formula (22). The curve labeled Hom refers to the
case of a single local J value while the curve “Inhom” refers to the
resistivity obtained by sample average over the local distribution
[Eq. (25)] of superfluid density. Inset: coefficient a(7)=1
+7J(T)/ T of the I-V characteristic in the two cases.

Tgir so the finite-size effects by themselves are not respon-
sible for the observed tail. On the other hand, from Fig. 3 we
notice that a tail with upward curvature is typical of the
fluctuation resistivity near the Tyyr transition. However
since 7. in this case is extremely small, the tail cannot be
even resolved in the scale of Fig. 6. On the contrary, if the
transition itself is broadened one could expect to enhance the
BKT tail and to reproduce the experimental data.

On the light of this observation, we suggest that the resis-
tive tail can be attributed to an inhomogeneous spatial distri-
bution of the local superfluid, to be ascribed to an intrinsic
inhomogeneous density distribution in these systems. In
analogy with the analysis of inhomogeneity on the superfluid
density performed in Ref. 21, we shall assume for simplicity
a Gaussian profile,

1 -(J-J)7
P(J) = \”Z_raexp[ Y ] (25)

where J is the J, value determined by the above fit for the
homogeneous case. To each J corresponds a mean-field tem-

perature T,,=T.(J/ J), and accordingly a given Tgxr value.
While far from Tggr such an inhomogeneity is harmless,
near Tgyr it will give important effects, once we average
over different patches having different transition tempera-
tures. To compute the effect of the sample inhomogeneity on
the resistivity we go back to Eq. (2), that defines the resis-
tivity due to vortices. We notice that the main quantity that
enters the theory is the vortex density; indeed, the correlation
length defined by Eq. (2) is just a different way to express
the vortex density. Thus, in the presence of the inhomogene-
ity [Eq. (25)], we must average the vortex-density values
np(J) obtained in each patch with a given local J value; in
this way, even below Tpkr there will be patches of the sys-

tem where 7y is finite because J<J and consequently the
local Tgkt is smaller than the average one. As a conse-
quence, the BKT tail gets enhanced, in excellent agreement
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with the experiments (with 6=0.02J), see Fig. 6.

A second effect of the inhomogeneity that emerges in the
experiments of Ref. 4 is the lack of the universal jump of the
superfluid density near J,. In Ref. 4, J; has been indirectly
measured via the /-V characteristics in the nonohmic regime

[see discussion above Eq. (28)], given within the KT theory
py! 31735

V= [+ (DIT _ ja(T) (26)

Thanks to the universal relation (10), right below the transi-
tion 7J (Tggr)/ Tgrr=2 so that the coefficient a=3. On the
other hand, in the infinite-size homogeneous case J((7T)
jumps discontinuously to zero right above Tggr so that the
coefficient a(T) is expected to jump discontinuously to 1.
Even though finite-size effects remove the jump and lead to a
rapid downturn (see inset of Fig. 6), the measured tempera-
ture dependence of a(T) is still much smoother. This effect
can be explained by the presence of inhomogeneity, that
leads to a smooth downturn of J near Tggr.”!

As a further check of the correctness of our analysis of the
data, we discuss the implication of the interpolated GL
+BKT fit on the estimated value of the superfluid-density
value at T=0. From the value of t,~8T,/(J;)=0.0106 ob-
tained by the fit, it follows [see Eq. (14)] that J,=7 K. Ac-
cording to Eq. (5) above, J, is in turn controlled by the
zero-temperature value of the density of superfluid electrons.
While in a clean superconductor nfD =n2P at T=0, where n?P
is the sheet carrier density of the sample, in the dirty case
only a fraction on the order of €,/ &, of the electron density
condenses into the superfluid fraction at 7=0, where €,
=vp7 is the mean-free path, with vy Fermi velocity and 7
scattering time. Since the BCS correlation length at 7=0 is
&=hvp/mA(0), with A superconducting gap, and 7 can be
determined by the sheet resistance R=n*"e?r/m* (here O]
denotes the sheet area), we obtain an estimate of the
disorder-reduced superfluid density as

#2n*P _ 12n%P wA(0)€

kgJy= :
B0 g dm*  hog
_ %nZDiZT'ﬂA(O) _ &’FA(O). (27)
e m 4 RD 4

Using the universal value R.=%/ e2=4114 /0, the mea-
sured normal-state resistance R=390 )/, and the BCS
estimate A(0)=1.76T, with T,=0.19 K, we obtain J,
=3 K, which is in excellent agreement with the value J,
=7 K obtained by the fit, taking into account the approxi-
mate estimate of the condensate fraction used in Eq. (27)
above.

The crucial role of inhomogeneities in controlling the tails
of the resistive transition is made even more evident by ex-
tending the above analysis to a second example of supercon-
ducting heterostructures measured in Ref. 5, where the
normal-state resistance is higher so that inhomogeneous ef-
fects could be expected to be stronger. We shall consider the
case of zero gate voltage in Ref. 5, i.e., the as-grown sample
without the field-induced doping. The data are shown in Fig.
7 along with our proposed fit (7,=0.269 K, Tgxr=0.25 K,
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FIG. 7. (Color online) Comparison between the experimental
data in the unbiased sample (V=0) of Ref. 5 and the resistivity
obtained with the interpolating formula (22), with (Inhom) and
without (Hom) inhomogeneity. The parameter values are given in
the text. The two arrows mark Tggt and 7. obtained with the fit in
the homogeneous case.

b=0.63, and J,=1.05 K). Notice that a larger b is consistent
with a larger 7., that in turn can be attributed to a larger
disorder in this second case. Indeed, in this sample R
=2400 /0, and since n*®=4.5x10"3 cm™ using Eq. (27)
we obtain a consistently smaller estimate of J,=0.6 K,
which is exactly the result of the fit (a factor of ten smaller
than the previous case). Moreover, the inhomogeneity is also

larger, with §=0.14J, and this explains the very large tail of
the transition.

As we emphasized above, finite-size effects alone cannot
account for the broadening of the transition. However, one
could convert in a hand-waving way the inhomogeneities
effects that we discuss into some form of typical size for
“homogeneous” grains in the system. Let us emphasize that
this is just a way to visualize the role of the inhomogeneities
and that we do not assume any sharp granular structure here,
see Fig. 8. The inhomogeneity distribution [Eq. (25)] and, in
particular, the broadening of J values, o, could be converted
into a characteristic size L., much smaller than the true
system size. An indication in this sense is provided by the
analysis of the I-V characteristics reported in Ref. 4. Indeed,

IJphys

FIG. 8. (Color online) Schematic sketch of the mesoscopic
structure of a 2D film that can account for the inhomogeneity ef-
fects discussed in this work. Even though the system does not have
a true granular structure the homogeneous regions will have a typi-
cal size Lyoy, smaller than the physical size Ly, of the sample. This
explains why L= Ly, <Ly in Eq. (29), giving rise to a critical
current for linear-to-nonlinear characteristic larger than expected for
the homogeneous case.
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within BKT physics the I-V characteristic is ohmic at low
current and nonohmic when the external current is suffi-
ciently high to dissociate vortex-antivortex pairs. Below
Tgxr» the critical current I* above which current-induced free
vortices lead to the anomalous power-law dependence de-
scribed by Eq. (26) above, is in turn related to a characteris-

tic length scale L, where finite-size effects become
relevant!®!7-33 so that
c L hys
I'=2mj——2%, 28
Dy L (28)
where L, is the physical dimension of the sample. By us-

ing the approximate relation between J; and Ty, one can
estimate for the sample of Ref. 4 that
c L

L
—phys _ s 55 1078 AL (29)

I'= 4KBTBKT(D L L
0

Since experimentally the critical current is of order of 0.5
X107® A and Ly =0.2 mm, we deduce that L~2 um.
This can be in turn identified with the size L, of the ho-
mogeneous domains so that €,,,=5.6, as we used in our
calculations. Notice that Eq. (28) accounts also for the tem-
perature dependence of I"(T) observed in the experiments;
indeed, as we have seen J(7T) increases rapidly below Tggr
[see the behavior of the a(T) exponent in Fig. 5], leading to
a very fast increase in the critical current below the Tgkr
transition. At temperatures well below Tyt one should fur-
ther account in the analysis of the /-V characteristic for the
nucleation of virtual vortex-antivortex pairs, formed by a
single vortex and its virtual image due to the edge currents in
a finite-size system, as pointed out recently in Ref. 36.

V. DISCUSSION ON THE ANALYSIS OF THE
EXPERIMENTAL DATA

In the previous section we performed a systematic analy-
sis of the resistivity data from Refs. 4 and 5. Our analysis is
based on the regular BKT transition and its connection with
Gaussian fluctuations leads to the conclusion that the BKT
transition occurs very near (within few percent) of the mean-
field GL transition temperature 7. In this case the BKT fluc-
tuation regime is restricted to a small range 7. of reduced
temperatures near Tggy, where the correlation length [Eq.
(24)] has the exponential behavior [Eq. (12)], with an expo-
nential divergence near Tgkr that is controlled by the same
parameter b [Eq. (21)] that measures the distance from the
GL transition T,.. At temperatures near and below Tgyr inho-
mogeneities are responsible for the tail in the resistive tran-
sition.

A quite different way to interpret the data was followed
instead in Refs. 4, 5, and 28, based essentially on the idea
that 7. is far larger than Tygr so that the whole fluctuation
regime should be described via the standard BKT approach,
see Fig. 1. For the sake of clarity in the following we will
refer to our approach as “BKT-GL” [Fig. 1(a)], and to the
one proposed in Refs. 4, 5, and 28 as “BKT-only” [Fig. 1(b)].
In the latter case, the expression (12) for the correlation
length should be valid in all the temperature regime where
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FIG. 9. (Color online) Example of application of the BKT fit
proposed in Ref. 28 for the same data shown in Fig. 7. The theo-
retical curve is Eq. (30) with Tpgr=0.245 K and »=0.106. Inset:
temperature dependence of the function f(r)=exp(-2b/\t) for two
b values. For b=1 one can clearly distinguish on this scale a first
regime with upward curvature, up to the temperature T, given by
Eq. (31), followed by a regime with downward curvature. For b
=0.1 only the second regime is visible on this scale.

R/Ry deviates from 1 and b is a number of order 1, to assure
that T is enough far from Tgkt. As a consequence, the whole
resistivity [Eq. (2)] is given at all temperature above Tggr by

i =A26—2b\5TBKT/(T—TBKT) — Azf(t) , (30)

Ry
where f(t):exp(—Zb/\s’;) and 7 is the reduced temperature
[Eq. (3)]. An example of application of Eq. (30) to the same
resistivity data analyzed in Fig. 7 above is presented in Fig.
9. Here we used Eq. (30) with Tggr=0.245 K and consid-
ered for the moment b as a completely free parameter. In this
case, a reasonable fit of the data can be obtained by using
b=0.106. Such a small value of » can be understood by
looking at the behavior of the function f(z) shown in the inset
of Fig. 9. As one can notice, if one extend f(r) at arbitrary ¢
values above Tyt it actually saturates to a constant value.
The crossover from the low-T regime where f(¢) displays an
upward curvature to the one where it displays an downward
curvature can be estimated by the flex of this curve, that is
found at

Tflex = TBKT[I + 044b2] . (3 1)

As a consequence, if b is very small the function f(¢) satu-
rates very rapidly and one can fit the experimental data with
the expression (30) by assuming a very small b value. How-
ever, this procedure is totally inconsistent with the fact that
within BKT theory b is not a free parameter, as we discussed
in the previous sections but it depends, through Eq. (21), on
the distance 7. between the BKT and GL temperatures. In
particular, the fit presented in Fig. 9 gives b=0.1, that would
imply a #,=0.0025, in clear contradiction with the a priori
assumption that 7. is so much larger than Tggy than the
whole fluctuation regime has BKT character. Moreover, a
smaller b value would also imply that J; is very large (J
~26 K), that is again inconsistent with the estimate [Eq.
(27)] based on the normal-state resistivity value (i.e., J,
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~7 K). We note, in particular, that this procedure leads to a
value for the parameter b that is about one order of magni-
tude smaller than what we obtained in our case (see Fig. 7),
where b=0.6. Indeed, in the BKT-GL approach most of the
fluctuation regime is accounted by GL fluctuations so that
Eq. (30) is actually valid only in the limited range of tem-
peratures T<<Ty,,, where f(z) displays an upward curvature.

An incorrect use of the BKT formulas can lead to quite
unphysical values for the b parameter, as it is the case in our
opinion for Ref. 28. Moreover, independently of the question
of the distance between Tyt and T,, a second drawback of
this BKT-only analysis is that it attributes the tail of the
transition, that is the real signature of BKT physics, to unre-
alistic finite-size effect. Indeed, in Ref. 28 it has been pro-
posed that the deviation from the best fit obtained with Eq.
(30) and the experimental data occurs when ¢ is cut off by
finite-size effects. As we have seen above, finite-size effects
become relevant near Tggr when ¢~ L, see Eq. (18). Thus,
since R/Ry=(&,/ &) according to Eq. (2), in Ref. 28 it has
been argued that the fit with Eq. (30) deviates from the ex-
perimental data when &T)=L, with T> Tggr. By applying
this idea, since from Fig. 9 it follows that the fit deviates
from the data already at R/Ry~0.5, one would obtain L
~2&,~100 A. This is an unrealistic small number for the
size of the homogeneous domains because it would not allow
at all the formation of coherent vortex structures (and then
the observation of their signatures) on a distance as small as
only twice the lattice spacing for phase fluctuations (i.e., &j).
In our approach instead the deviation of the experimental
data from the homogeneous-case fit is due to inhomogeneity
while finite-size effects alone cannot account for it.

The only way to possibly justify the BKT-only analysis of
the data would be if for some reason the constraints on the b
parameter that we establish in our paper for a conventional
BKT transition would not be obeyed, namely, if the transi-
tion is of a different nature than the conventional BKT tran-
sition. What could be such an alternative is unclear from a
theoretical point of view. A proposal in this sense has been
formulated in Ref. 4, where it has been argued that in these
systems one can estimate the initial value of the vortex
fugacity in the RG Egs. (8) and (9) to be quite large, invali-
dating the applicability itself of the perturbative RG.'37 In
this case, following the analysis of Ref. 37, the BKT transi-
tion has a qualitative different character since it refers to the
melting of the 2D lattice of vortices formed at high vortex
density. Such a scenario can provide, for example, an alter-
native interpretation to the high values of the critical current
I [Eq. (28)] mentioned above (see Supplementary Informa-
tion of Ref. 4). This is thus an interesting proposal but it
leads to a BKT-only analysis of the data that still suffers
from two main problems: (a) no theoretical work has been
devoted so far to explore the signatures of such a melting
transition, if it exists, on the SC fluctuations contribution to
the resistivity. In particular, it is not at all obvious that such
a scenario would lead to a different b parameter so that the
small b value obtained by the application of Eq. (30) at all
temperatures above Tggr would be meaningful. (b) Recent
numerical simulations on the vortex liquid do not confirm the
existence of this crystal phase even at high vortex fugacity
and only standard BKT vortex phase seems to be present so
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that it is not even clear whether such a melting transition
would exist. Thus, more theoretical and experimental work is
certainly needed to test this possibility and to decide which
one of the interpretations, the BKT-GL approach or the
BKT-only based on the idea of vortex-lattice melting, is in-
deed the correct explanation of the existing data. For ex-
ample, further measurements of the size dependence of the
critical current I* or the direct measurement (via two-coils
mutual inductance experiments) of the temperature depen-
dence of the superfluid density can provide us with addi-
tional information on the system, to be tested against the
different theoretical proposals.

VI. CONCLUSIONS

In the present work we investigated the role of finite-size
effects and inhomogeneity of the BKT transition in quasi-2D
SC systems. By analytical and numerical analysis of the RG
equations for the BKT transitions we determined in a precise
way how the properties of the system control the behavior of
the correlation length above and below the transition. By
interpolating the BKT behavior with the GL fluctuations we
propose an unified scheme to determine both the mean-field
transition temperature 7. and the BKT one Tggr from a fit of
the resistivity data. In our approach, those that are usually
treated as free parameters in the BKT fitting formula are
implicitly determined by the these temperature scales, and
allows us to identify the effects that must be attributed to the
finite system size and inhomogeneity. The direct comparison
with recent experiments in SC heterostructures suggests that
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spatial inhomogeneity, whose role we discussed already in
the context of ultrathin films of high-T, superconductors,?' is
a common ingredient to these systems as well. Our analysis
allows us to estimate also the superfluid-density content of
these unconventional SC interfaces, whose direct experimen-
tal determination is not yet available. Interestingly, in Ref. 5
it has been shown that by decreasing the carrier density by
field-effect one can induce in such heterostructures the tran-
sition from a SC to a metallic and then insulating state. An
interesting open issue is the role played by inhomogeneity in
such a crossover, for example, one could expect that as
Jo(T,) decreases and & increases one reaches the percolative
threshold below which the system cannot sustain anymore
superfluid currents, in analogy with the behavior of diluted
XY models.* This issue can have profound consequences on
the nature of the quantum critical point inferred in Ref. 5,
and certainly deserves further investigation.
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